You've described a very specific organic molecule, which is a **derivative of a pyrano[2,3]thieno[2,4-b]pyrimidine** - a complex heterocyclic ring system.
**Understanding its Importance:**
Unfortunately, without further context, it's impossible to definitively say why this specific molecule is important for research. However, we can deduce some possibilities based on its structure and similar molecules:
* **Potential Drug Activity:** The presence of various functional groups like the fluorine atom, furan ring, and the imine group suggests potential for biological activity. It's likely this compound or close analogues have been studied for their potential to interact with biological targets (enzymes, receptors, etc.).
* **Synthesis & Methodology Development:** The synthesis of this complex molecule could itself be a research focus. Developing new synthetic routes for complex molecules is important for pharmaceutical and material science applications.
* **Structure-Activity Relationship (SAR) Studies:** This compound could be part of a series of related molecules where modifications are made to study the effect on biological activity or physical properties. This is a common approach in drug discovery.
* **Materials Science:** Some heterocyclic systems like this can exhibit interesting optical, electronic, or magnetic properties. This compound could be investigated for potential applications in materials science.
**To understand the true importance of this specific molecule, you would need more information, such as:**
* **What research group is studying it?**
* **What is the research question being addressed?**
* **What are the biological or chemical properties of interest?**
**To find out more, I recommend:**
* **Searching scientific databases like PubMed or SciFinder using the molecule's name or a related chemical term.**
* **Looking for publications from research groups working on this class of compounds.**
By doing this, you can gain a deeper understanding of the specific research context and why this molecule is of interest.
ID Source | ID |
---|---|
PubMed CID | 665222 |
CHEMBL ID | 1354100 |
CHEBI ID | 104896 |
Synonym |
---|
STK617819 |
1-(4-fluorobenzyl)-3-(furan-2-ylmethyl)-4-imino-6,6-dimethyl-1,3,4,5,6,8-hexahydro-2h-pyrano[4',3':4,5]thieno[2,3-d]pyrimidin-2-one |
AKOS005551852 |
smr000046237 |
MLS000082537 |
CHEBI:104896 |
MLS002583555 |
HMS2277E12 |
CHEMBL1354100 |
1-[(4-fluorophenyl)methyl]-3-(2-furanylmethyl)-4-imino-6,6-dimethyl-5,8-dihydropyrano[2,3]thieno[2,4-b]pyrimidin-2-one |
Q27182562 |
6-[(4-fluorophenyl)methyl]-4-(furan-2-ylmethyl)-3-imino-12,12-dimethyl-11-oxa-8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1(9),2(7)-dien-5-one |
Class | Description |
---|---|
organic heterobicyclic compound | |
organosulfur heterocyclic compound | |
organonitrogen heterocyclic compound | Any organonitrogen compound containing a cyclic component with nitrogen and at least one other element as ring member atoms. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 39.8107 | 0.0447 | 17.8581 | 100.0000 | AID485341 |
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 56.2341 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 7.0795 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 28.1838 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 18.3564 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 24.8446 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 28.1838 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
thyroid stimulating hormone receptor | Homo sapiens (human) | Potency | 31.6228 | 0.0013 | 18.0743 | 39.8107 | AID926; AID938 |
nonstructural protein 1 | Influenza A virus (A/WSN/1933(H1N1)) | Potency | 11.2202 | 0.2818 | 9.7212 | 35.4813 | AID2326 |
67.9K protein | Vaccinia virus | Potency | 0.8913 | 0.0001 | 8.4406 | 100.0000 | AID720580 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 56.2341 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
IDH1 | Homo sapiens (human) | Potency | 6.5131 | 0.0052 | 10.8652 | 35.4813 | AID686970 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 4.1095 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 12.5893 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
pyruvate kinase PKM isoform a | Homo sapiens (human) | Potency | 15.8489 | 0.0401 | 7.4590 | 31.6228 | AID1631; AID1634 |
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | Homo sapiens (human) | Potency | 84.9214 | 0.4256 | 12.0591 | 28.1838 | AID504891 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 2.2387 | 0.0079 | 8.2332 | 1,122.0200 | AID2546 |
Vpr | Human immunodeficiency virus 1 | Potency | 63.0957 | 1.5849 | 19.6264 | 63.0957 | AID651644 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 5.6234 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
neuropeptide S receptor isoform A | Homo sapiens (human) | Potency | 2.5119 | 0.0158 | 12.3113 | 615.5000 | AID1461 |
Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) | Potency | 31.6228 | 0.3162 | 12.7657 | 31.6228 | AID881 |
Histamine H2 receptor | Cavia porcellus (domestic guinea pig) | Potency | 31.6228 | 0.0063 | 8.2350 | 39.8107 | AID881 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
iron ion binding | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
calcium ion binding | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
protein binding | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
lipid binding | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
linoleate 13S-lipoxygenase activity | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
arachidonate 8(S)-lipoxygenase activity | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
arachidonate 15-lipoxygenase activity | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
linoleate 9S-lipoxygenase activity | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
nucleus | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
cytosol | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
cytoskeleton | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
plasma membrane | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
adherens junction | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
focal adhesion | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
membrane | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
extracellular exosome | Polyunsaturated fatty acid lipoxygenase ALOX15B | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |